BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20260121T022002EST-9408zmHMXf@132.216.98.100 DTSTAMP:20260121T072002Z DESCRIPTION:Title: Higher Fourier interpolation on the plane\n\nAbstract:   Let $lgeq 6$ be any integer\, where $lequiv 2$ mod $4$. Let $f(x)=int e^{i pi au |x|^2}dmu( au)$ and $mathcal{F}(f)$ be the Fourier transform of $f$\ , where $xin R^2$ and $mu$ is a measure with bounded variation and support ed on a compact subset of $ au inCC$\, where $Im( au)\,Im(-rac{1}{ au})>si n(rac{pi}{l}).$ For every integer $kgeq 0$ and $xin R^2\,$\n \n We express $ f(x)$ by the values of $rac{d^k f}{du^k}$ and $rac{d^k mathcal{F}f}{du^k}$  at $u=rac{2n}{lambda}\,$ where $u=|x|^2$ and $lambda=2cos(rac{pi}{l}).$ W e show that the condition $Im( au)\,Im(-rac{1}{ au})>sin(rac{pi}{l})$ is o ptimal.We also identify the cokernel to these values with a specific space of holomorphic modular forms of weight $2k+1$ associated to the Hecke tri angle group $(2\,l\,infty)$.Using our explicit formulas for $l=6$ and deve loping new methods\, we prove a conjecture of Cohn\, Kumar\, Miller\, Radc henko and Viazovska~cite[Conjecture 7.5]{Maryna3} motivated by the univers al optimality of the hexagonal lattice.\n\nWeb details\, please contact: m artinez [at] crm.umontreal.ca\n DTSTART:20210318T180000Z DTEND:20210318T190000Z SUMMARY:Naser Sardari (Pennsylvania State University) URL:/mathstat/channels/event/naser-sardari-pennsylvani a-state-university-329700 END:VEVENT END:VCALENDAR