BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20260124T025407EST-92070D4pud@132.216.98.100 DTSTAMP:20260124T075407Z DESCRIPTION:We consider the random discrete Schrödinger operator $H=L+V$\no n the one dimensional integer lattice $Z$. The operator $L$ is the\ndiscre te laplacian\, $(LF)(x)=f(x-1)+f(x+1)$\, and $V$ is a\npotantial\, $Vf(x)= v(x)f(x)$\, where $v(x)$ is a family of\nindependent random variables. We will discuss a new method to\nestablish localization\, i.e. that generical ly the eigenfunctions of\n$H$ decay exponentially. The method is robust en ough to allow\n$v(x)$ to have different probability distributions for diff erent\nlattice points $x$. Moreover\, the method allows to obtain lower\nb ounds for the rate of decay of the eigenfunctions. The talk will\nbe given in the language of finite dimensional matrices and basic\nprobability the ory.\n DTSTART:20081215T173000Z DTEND:20081215T173000Z LOCATION:Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:One dimensional Anderson model with non-homogeneous disorder URL:/channels/event/one-dimensional-anderson-model-non -homogeneous-disorder-103293 END:VEVENT END:VCALENDAR